Linear Regression in Python

Online Statistical Computing Reference Machine Learning Module

> © Kaixin Wang November 2019

Introduction

- In this module, we will be introducing how to construct a linear regression model on a given dataset.
- A linear model can take on two forms:
 - Simple linear regression (SLR) model $y ~\sim~ x$ where y is the response and x is a predictor variable
 - Multiple linear regression (MLR) model $y \sim x_1 + x_2 + ... + x_n$ where x_i are predictor variables in predicting the response variable y

Structure of this tutorial

- Data Import
- Data Preprocessing
- Exploratory Data Analysis (EDA)
 - Correlation heatmap, boxplots, scatterplots, histograms and density plots
- Linear Regression Modeling:
 - Variable selection
 - Summary statistics
 - Diagnostics and assumptions
 - Model selection
- Discussion

Data Import

- The dataset that we will be using is the soil.csv dataset
- To load the data into Python:

```
In [5]: soil = pd.read_csv("soil.csv") # data import
soil.head() # check if read in correctly
```

```
Out[5]:
```

	x	У	cadmium	copper	lead	zinc	elev	dist	om	ffreq	soil	lime	landuse	dist.m
0	181072	333611	11.7	85	299	1022	7.909	0.001358	13.6	1	1	1	Ah	50
1	181025	333558	8.6	81	277	1141	6.983	0.012224	14.0	1	1	1	Ah	30
2	181165	333537	6.5	68	199	640	7.800	0.103029	13.0	1	1	1	Ah	150
3	181298	333484	2.6	81	116	257	7.655	0.190094	8.0	1	2	0	Ga	270
4	181307	333330	2.8	48	117	269	7.480	0.277090	8.7	1	2	0	Ah	380

• To check the dimension of the dataset:

In [6]: soil.shape # rows x columns

Out[6]: (155, 14)

Data Import

- Variables in the dataset:
 - **x**: x-coordinate of the location
 - **y**: y-coordinate of the location
 - **cadmium**: topsoil cadmium concentration
 - **copper**: topsoil copper concentration
 - **lead**: topsoil lead concentration
 - **zinc**: topsoil zinc concentration
 - elev: relative elevation above local river bed
 - **dist**: distance to the Meuse
 - **om**: organic matter
 - **ffreq**: flooding frequency class (1 = once in 2 years; 2 = once in 10 years; 3 = once in 50 years)
 - **soil**: soil type according to the 1:50000 soil map of the Netherlands
 - lime: lime class (0 = absent, 1 = present)
 - landuse: landuse class
 - dist.m: distance to river Meuse in meters

Data Import

- Variables in the dataset:
 - **x**: x-coordinate of the location
 - **y**: y-coordinate of the location
 - **cadmium**: topsoil cadmium concentration
 - **copper**: topsoil copper concentration
 - **lead**: topsoil lead concentration (response variable)
 - **zinc**: topsoil zinc concentration
 - elev: relative elevation above local river bed
 - **dist**: distance to the Meuse
 - **om**: organic matter
 - **ffreq**: flooding frequency class (1 = once in 2 years; 2 = once in 10 years; 3 = once in 50 years)
 - **soil**: soil type according to the 1:50000 soil map of the Netherlands
 - **lime**: lime class (0 = absent, 1 = present)
 - landuse: landuse class
 - dist.m: distance to river Meuse in meters

Data Preprocessing

- We notice that there are a few missing values in the original dataset.
- Since there are only a small number of rows with missing values, we can remove those rows:

```
In [8]: index = pd.isnull(soil).any(axis = 1)
soil = soil[-index]
soil = soil.reset_index(drop = True)
```

In [9]: soil.shape

Out[9]: (152, 14)

- correlation heatmap
- boxplots
- scatterplots
- histograms and density plots

correlation heatmap

ou+[11].	elev	-0.584323
Out[11]:		-0.584323
	dist.m	-0.584204
	dist	-0.576577
	soil	-0.430423
	ffreq	-0.399238
	х	-0.158104
	у	0.069192
	lime	0.501632
	om	0.547836
	cadmium	0.800898
	copper	0.817000
	zinc	0.954303
	lead	1.000000
	Name: lead	l, dtype: float64

			rears	son co	Inela		eaun	ap be	tweer	i vario	apies				
x	- 1	0.86	0.03	0.0068	-0.16	-0.12	0.31	0.12	-0.051	-0.43	0.41	-0.086	0.14		- 0.9
y ·	0.86	1	0.23	0.26	0.069	0.11	0.11	-0.18	0.16	-0.63	0.12	0.18	-0.16		
cadmium ·	0.03	0.23	1	0.92	0.8	0.92	-0.56	-0.61	0.72	-0.48	-0.38	0.69	-0.62		
copper ·	0.0068	0.26	0.92	1	0.82	0.91	-0.58	-0.61	0.73	-0.47	-0.37	0.68	-0.61		- 0.6
lead ·	-0.16	0.069	0.8	0.82	1	0.95	-0.58	-0.58	0.55	-0.4	-0.43	0.5	-0.58		
zinc ·	-0.12	0.11	0.92	0.91	0.95	1	-0.59	-0.64	0.68	-0.41	-0.45	0.64	-0.66		- 0.3
elev ·	0.31	0.11	-0.56	-0.58	-0.58	-0.59	1	0.53	-0.35	0.43	0.5	-0.43	0.5		
dist ·	0.12	-0.18	-0.61	-0.61	-0.58	-0.64	0.53	1	-0.56	0.26	0.66	-0.51	0.98		- 0.0
om ·	-0.051	0.16	0.72	0.73	0.55	0.68	-0.35	-0.56	1	-0.24	-0.44	0.6	-0.58		
ffreq	-0.43	-0.63	-0.48	-0.47	-0.4	-0.41	0.43	0.26	-0.24	1	0.042	-0.41	0.25		
soil ·	0.41	0.12	-0.38	-0.37	-0.43	-0.45	0.5	0.66	-0.44	0.042	1	-0.37	0.64		0.3
lime ·	-0.086	0.18	0.69	0.68	0.5	0.64	-0.43	-0.51	0.6	-0.41	-0.37	1	-0.54		
dist.m ·	0.14	-0.16	-0.62	-0.61	-0.58	-0.66	0.5	0.98	-0.58	0.25	0.64	-0.54	1		0.6
	- x	y -	cadmium -	- copper	lead -	zinc -	elev -	díst -	- mo	ffreg -	- Iio	lime -	díst.m -		

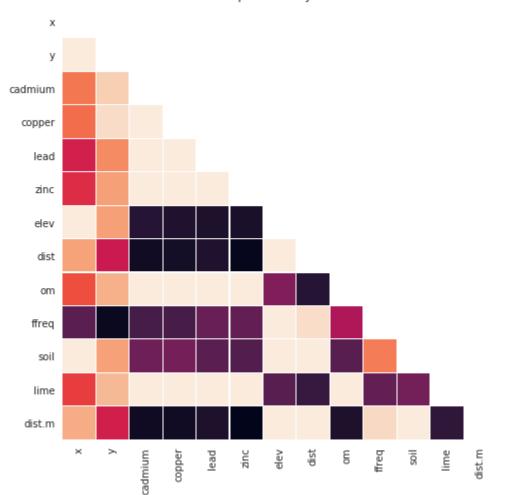
Pearson Correlation Heatmap between variables

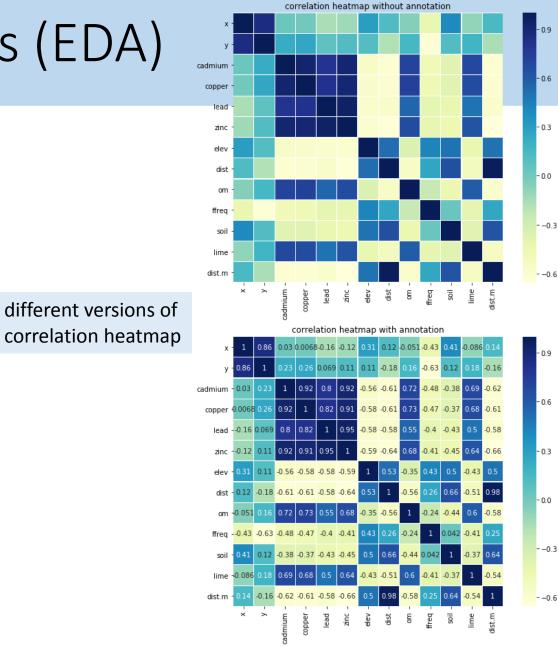
correlation heatmap

Out[11]:	elev	-0.584323	
	dist.m	-0.584204	
	dist	-0.576577	negative correlation
	soil	-0.430423	
	ffreq	-0.399238	
	X	-0.158104	
(у	0.069192	
	lime	0.501632	
	om	0.547836	positive correlation
	cadmium	0.800898	positive correlation
	copper	0.817000	
	zinc	0.954303	
	lead	1.000000	
	Name: lead	l, dtype: fl	oat64

Pearson Correlation Heatmap between variables 0.41 -0.086 0.14 1 0.86 0.03 0.0068 -0.16 -0.12 0.31 0.12 -0.051 -0.43 x -- 0.9 0.16 -0.63 0.12 y - 0.86 1 0.23 0.26 0.069 0.11 0.11 -0.18 0.18 -0.16 0.8 0.92 -0.56 -0.61 0.92 0.72 -0.48 -0.38 0.69 -0.62 0.03 0.23 1 cadmium - 0.6 0.82 0.91 -0.58 -0.61 0.73 -0.47 -0.37 0.68 -0.61 copper -0.0068 0.26 0.92 1 0.95 -0.58 -0.58 -0.58 0.8 0.82 1 -0.4 -0.43 lead --0.16 0.069 0.55 -0.12 0.11 0.92 0.91 0.95 -0.59 -0.64 0.68 -0.41 -0.45 0.64 -0.66 1 zinc - 0.3 0.31 0.11 -0.56 -0.58 -0.58 -0.59 -0.35 -0.43 1 elev -0.66 -0.51 0.98 0.12 -0.18 -0.61 -0.61 -0.58 -0.64 1 -0.56 0.26 dist -053 - 0.0 -0.58 0.72 0.73 0.68 -0.35 -0.56 -0.24 -0.44 om -0.051 0.16 0.55 1 0.042 -0.41 -0.4 -0.41 0.43 0.26 -0.43 -0.63 -0.48 -0.47 -0.24 1 0.25 ffreq - -0.3 0.41 0.12 -0.38 -0.37 -0.43 -0.45 0.66 -0.44 0.042 1 -0.37 0.64 soil lime --0.086 0.18 -0.41 -0.37 0.69 0.68 0.64 -0.43 -0.51 1 -0.54 0.64 -0.54 0.14 -0.16 -0.62 -0.61 -0.58 -0.66 0.98 -0.58 0.25 dist.m --0.6 \times ~ copper ead dist ffreq ime dist.m cadmium zinc elev B 8

correlation heatmap without symmetric information





- 0.2

- 0.0

- -0.2

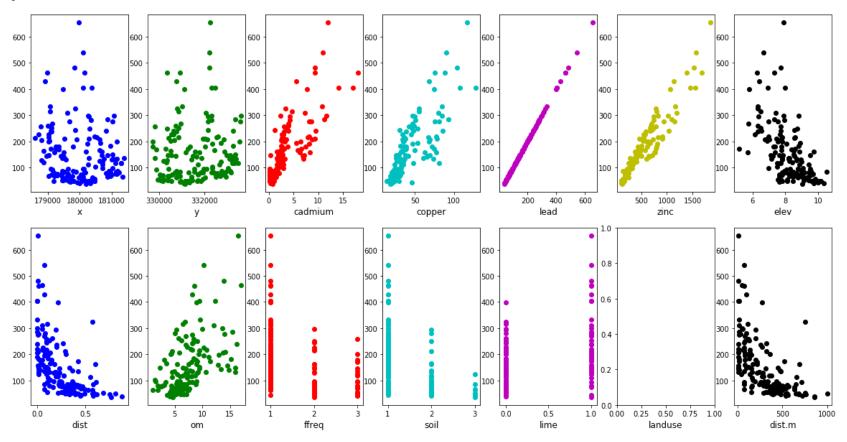
- -0.4

- -0.6

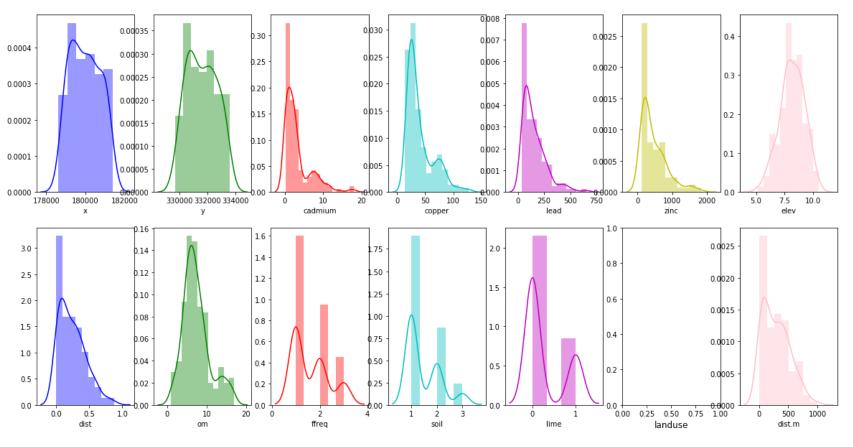
boxplot of variables boxplots 181500 • • 0 333500 17.5 1750 ٠ 120 600 0 10 181000 333000 A 15.0 1500 100 500 332500 9 180500 12.5 1250 332000 80 400 · 10.0 8 1000 180000 331500 300 · 7.5 60 750 7 331000 179500 5.0 · 200 40 500 330500 6 179000 2.5 100 250 330000 20 T 0 0.0 178500 5 329500 1 1 1 1 cadmium lead elev copper zinc х у 3.0 · 3.0 1.0 1000 0.8 15.0 0.8 0.8 800 2.5 2.5 12.5 0.6 0.6 0.6 600 10.0 2.0 2.0 0.4 7.5 0.4 400 0.4 5.0 1.5 1.5 0.2 0.2 200 0.2 2.5 0.0 1.0 1.0 0.0 0 0.0 0.00 0.25 0.50 0.75 1.00 1 1 1 1 1 1 dist ffreq landuse dist.m om soil lime

• scatterplots

scatterplot of lead vs. predictors



• histograms and density plots histogram and density plot of each variable



- Variable selection
- Summary statistics
- Diagnostics and assumption checking
- Model selection

- Variable selection: based on correlation coefficients
 - Lead ~ cadmium + copper + zinc + elev + lime
- Split the dataset into training and testing sets:

In [20]: X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.33, random_state = 42)

- Fit a linear model on training set: using scikit-learn module
 - In [21]: model = LinearRegression().fit(X_train, y_train)
 - In [22]: # R^2 on training set
 R2_train = model.score(X_train, y_train)
 R2_train
 - Out[22]: 0.9483947080189404
 - In [23]: # R^2 on testing set
 R2_test = model.score(X_test, y_test)
 R2_test
 - Out[23]: 0.964901551899052

Lead ~ cadmium + copper + zinc + elev + lime (using statsmodel module)

In [27]: fullModel = fullModel.fit()

print(fullModel.summary())

		OLS Regres	sion Resul	.ts		
Dep. Variable: Model:		lead OLS	R-square	0.948 0.945		
Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	Mon, ns:	11 Nov 2019	Prob (F-	BIC:		
	coef	std err	t	P> t	[0.025	0.975]
	23.8739 -24.7610 -13.2322 0.0522 0.4188 -2.4719	27.200 7.775 2.240 0.278 0.020 2.895	0.878 -3.185 -5.908 0.187 20.756 -0.854	0.382 0.002 0.000 0.852 0.000 0.395	-30.126 -40.196 -17.679 -0.500 0.379 -8.220	77.874 -9.326 -8.785 0.605 0.459 3.276
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2.077 0.354 -0.246 3.336		era (JB): :		1.947 1.494 0.474 6.42e+03

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 6.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Lead ~ cadmium + copper + zinc + elev + lime (using statsmodel module)

In [27]: fullModel = fullModel.fit()

print(fullModel.summary())

		OLS Regres	sion Resul	.ts		
Dep. Variable: lead Model: OLS Method: Least Squares		Adj. R-s		0.948 0.945 340.0		
Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	Mon, ns:	11 Nov 2019	Prob (F-statistic): Log-Likelihood: AIC: BIC:			2.35e-59 -467.76 947.5 963.2
	coef	std err	t	P> t	[0.025	0.975]
C(lime)[T.1]	23.8739 -24.7610 -13.2322 0.0522 0.4188 -2.4719	27.200 7.775 2.240 0.278 0.020 2.895	0.878 -3.185 -5.908 0.187 20.756 -0.854	0.382 0.002 0.000 0.852 0.000 0.395	-30.126 -40.196 -17.679 -0.500 0.379 -8.220	77.874 -9.326 -8.785 0.605 0.459 3.276
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2.077 0.354 -0.246 3.336	Durbin-W Jarque-B Prob(JB) Cond. No	era (JB): :		1.947 1.494 0.474 6.42e+03

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 6.42e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- R²_{adi} of this model is around **94.5%**.
- Statistical test on each predictor:
 - cadmium: significant
 - copper: not significant
 - zinc: significant
 - elev: not significant
 - lime: significant

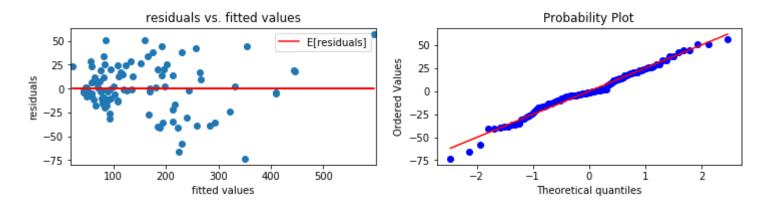
• Summary statistics

print(table1)

	RMSE	R-squared	size
training set	262.286912	0.948395	101
testing set	159.247070	0.964902	51

- Lower RSME on testing set
- Higher R² on testing set

• Diagnostics and assumption checking



- Assumption of constant variance: satisfied
- Assumption that E[residuals] = 0: satisfied
- Assumption of normality of the response: satisfied

- Model selection:
 - We used 5 predictors in our previous model, but some of the predictors are not statistically significant compared with others.
 - We can consider reducing the number of predictors to improve the model's prediction performance, by selecting only a subset of these 5 predictors.
 - Since cadmium, zinc and lime are highly statistically significant, we now refit a model using only these 3 predictors:
 - Full model: Lead ~ cadmium + copper + zinc + elev + lime
 - Reduced model: Lead ~ cadmium + zinc + lime

• Summary statistics: Lead ~ cadmium + zinc + lime (using statsmodel module)

In [35]: df_train = pd.concat([X_train, y_train], axis = 1) # build a dataframe for training set
reducedModel = smf.ols("lead ~ cadmium + zinc + C(lime)", data = df_train)
reducedModel = reducedModel.fit()
print(reducedModel.summary())

	OLS Regression Results						
Dep. Variable:	:	lead	R-square	ed :		0.948	
Model:		OLS	Adj. R-s	quared:		0.946	
Method:	L	east Squares	F-statis	tic:		584.7	
Date:		08 Nov 2019				5.98e-62	
Time:			Log-Like			-468.19	
No. Observations:		101	AIC:			944.4	
Df Residuals:		97	BIC:			954.8	
Df Model:		3	510.			55410	
Covariance Typ		nonrobust					
	coef	std err	t		[0.025	0.975]	
Intercept	2.6976				-6.461	11.856	
C(lime)[T.1]	-23.4871	7.569	-3.103	0.003	-38.509	-8.465	
cadmium	-13.0934	1.986	-6.593	0.000	-17.035	-9.152	
zinc	0.4237	0.019	22.540	0.000	0.386	0.461	
Omnibus:			Durbin-W			1.968	
Prob(Omnibus)	:	0.688		era (JB):		0.395	
Skew:			Prob(JB):			0.821	
Kurtosis:		3.160	Cond. No	•		1.79e+03	

• Summary statistics: Lead ~ cadmium + zinc + lime (using statsmodel module)

In [35]: df_train = pd.concat([X_train, y_train], axis = 1) # build a dataframe for training set
reducedModel = smf.ols("lead ~ cadmium + zinc + C(lime)", data = df_train)
reducedModel = reducedModel.fit()
print(reducedModel.summary())

		OLS Regres	sion Resul	.ts			
Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Typ	L Fri, ns:	lead OLS Least Squares Fri, 08 Nov 2019 23:31:40 101 97 3 nonrobust			0.948 0.946 584.7 5.98e-62 -468.19 944.4 954.8		
	coef	std err	t	P> t	[0.025	0.975]	
C(lime)[T.1]	-23.4871	1.986	-3.103 -6.593	0.003	-38.509		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.749 0.688 -0.131 3.160	Jarque-E	Bera (JB):		1.968 0.395 0.821 1.79e+03	

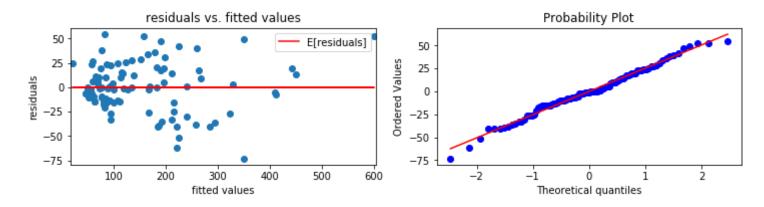
- R²_{adj} of this model is around 94.6%, higher than the previous model.
- Statistical test on each predictor:
 - cadmium: significant
 - zinc: significant
 - lime: significant

• Summary statistics of the reduced model

	RMSE	R-squared	size
training set	264.533494	0.947595	101
testing set	168.763005	0.960907	51

- Lower RSME on testing set
- Higher R² on testing set

• Diagnostics of the reduced model:



- Assumption of constant variance: satisfied
- Assumption that E[residuals] = 0: satisfied
- Assumption of normality of the response: satisfied

Comparison of the reduced and full model:

• RMSE (*root-mean-squared error*) and R² of two models:

• model with 5 predictors (full model)

In [38]: print(table1) RMSE R-squared size training set 262.286912 0.948395 101 testing set 159.247070 0.964902 51

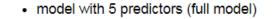
model with 3 predictors (reduced model)

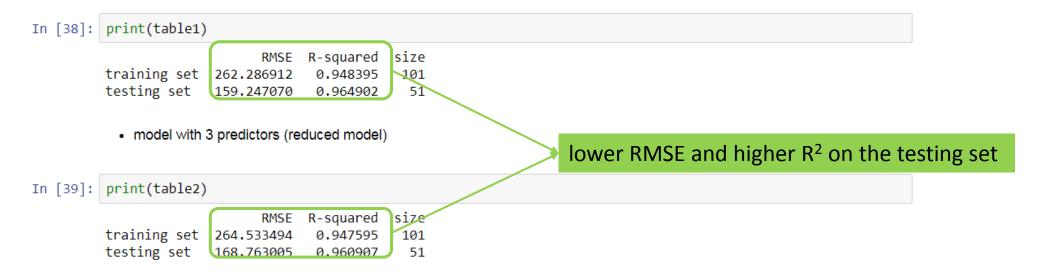
In [39]: print(table2)

		R-squared	
training set	264.533494	0.947595	101
testing set	168,763005	0.960907	51

Comparison of the reduced and full model:

• RMSE (root-mean-squared error) of the two models:





Comparison of the reduced and full model:

• To decide whether to adopt the reduced model, we can conduct oneway **ANOVA** (*Analysis of Variance*) on the reduced and full model:

ANOVA of between the reduced and full model

In [40]: table = sm.stats.anova_lm(reducedModel, fullModel) # Type 2 ANOVA DataFrame
table # ANOVA table

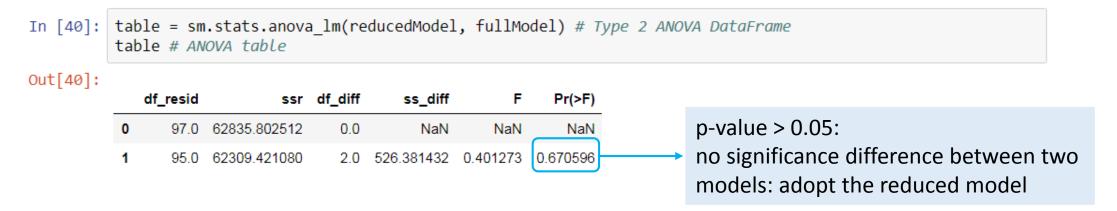
Out[40]:

	df_resid	ssr	df_diff	ss_diff	F	Pr(>F)
0	97.0	62835.802512	0.0	NaN	NaN	NaN
1	95.0	62309.421080	2.0	526.381432	0.401273	0.670596

Comparison of the reduced and full model:

• To decide whether to adopt the reduced model, we can conduct oneway **ANOVA** (*Analysis of Variance*) on the reduced and full model:

ANOVA of between the reduced and full model



- We observe that there is no significance different between the reduced model and the full model (based on the ANOVA test).
- Therefore, we will adopt the MLR model with 3 predictor variables:

lead ~ cadmium + lime + zinc

- Possible improvements:
 - Consider fitting a nonlinear model (although this increases model complexity)
 - Consider transforming the response variable and some predictor variables
 - Consider creating new features based on current predictor variables to bring down model complexity

- Dataset: meuse dataset in R
- To access the dataset in R:

install.package("sp")#required when first time using the library
library(sp)
data(meuse)

To learn more about linear regression and machine learning: go to OSCR's webpage at <u>https://oscrproject.wixsite.com/website</u>